8,668 research outputs found

    Goal accomplishment tracking for automatic supervision of plan execution

    Get PDF
    It is common practice to break down plans into a series of goals or sub-goals in order to facilitate plan execution, thereby only burdening the individual agents responsible for their execution with small, easily achievable objectives at any one time, or providing a simple way of sharing these objectives amongst a group of these agents. Ensuring that plans are executed correctly is an essential part of any team management. To allow proper tracking of an agent's progress through a pre-planned set of goals, it is imperative to keep track of which of these goals have already been accomplished. This centralised approach is essential when the agent is part of a team of humans and/or robots, and goal accomplishment is not always being tracked at a low level. This paper presents a framework for an automated supervision system to keep track of changes in world states so as to chart progress through a pre-planned set of goals. An implementation of this framework on a mobile service robot is presented, and applied in an experiment which demonstrates its feasibility

    Adaptive planning for distributed systems using goal accomplishment tracking

    Get PDF
    Goal accomplishment tracking is the process of monitoring the progress of a task or series of tasks towards completing a goal. Goal accomplishment tracking is used to monitor goal progress in a variety of domains, including workflow processing, teleoperation and industrial manufacturing. Practically, it involves the constant monitoring of task execution, analysis of this data to determine the task progress and notification of interested parties. This information is usually used in a passive way to observe goal progress. However, responding to this information may prevent goal failures. In addition, responding proactively in an opportunistic way can also lead to goals being completed faster. This paper proposes an architecture to support the adaptive planning of tasks for fault tolerance or opportunistic task execution based on goal accomplishment tracking. It argues that dramatically increased performance can be gained by monitoring task execution and altering plans dynamically

    Standardized field testing of assistant robots in a Mars-like environment

    Get PDF
    Controlled testing on standard tasks and within standard environments can provide meaningful performance comparisons between robots of heterogeneous design. But because they must perform practical tasks in unstructured, and therefore non-standard, environments, the benefits of this approach have barely begun to accrue for field robots. This work describes a desert trial of six student prototypes of astronaut-support robots using a set of standardized engineering tests developed by the US National Institute of Standards and Technology (NIST), along with three operational tests in natural Mars-like terrain. The results suggest that standards developed for emergency response robots are also applicable to the astronaut support domain, yielding useful insights into the differences in capabilities between robots and real design improvements. The exercise shows the value of combining repeatable engineering tests with task-specific application-testing in the field

    DOTS in Aral Sea area.

    Get PDF

    Not a drop to drink in the Aral Sea.

    Get PDF

    Detecting periodicity in experimental data using linear modeling techniques

    Get PDF
    Fourier spectral estimates and, to a lesser extent, the autocorrelation function are the primary tools to detect periodicities in experimental data in the physical and biological sciences. We propose a new method which is more reliable than traditional techniques, and is able to make clear identification of periodic behavior when traditional techniques do not. This technique is based on an information theoretic reduction of linear (autoregressive) models so that only the essential features of an autoregressive model are retained. These models we call reduced autoregressive models (RARM). The essential features of reduced autoregressive models include any periodicity present in the data. We provide theoretical and numerical evidence from both experimental and artificial data, to demonstrate that this technique will reliably detect periodicities if and only if they are present in the data. There are strong information theoretic arguments to support the statement that RARM detects periodicities if they are present. Surrogate data techniques are used to ensure the converse. Furthermore, our calculations demonstrate that RARM is more robust, more accurate, and more sensitive, than traditional spectral techniques.Comment: 10 pages (revtex) and 6 figures. To appear in Phys Rev E. Modified styl

    Optimal phase space projection for noise reduction

    Get PDF
    In this communication we will re-examine the widely studied technique of phase space projection. By imposing a time domain constraint (TDC) on the residual noise, we deduce a more general version of the optimal projector, which includes those appearing in previous literature as subcases but does not assume the independence between the clean signal and the noise. As an application, we will apply this technique for noise reduction. Numerical results show that our algorithm has succeeded in augmenting the signal-to-noise ratio (SNR) for simulated data from the R\"ossler system and experimental speech record.Comment: Accepted version for PR

    The generalized identification of truly interfacial molecules (ITIM) algorithm for nonplanar interfaces

    Get PDF
    We present a generalized version of the ITIM algorithm for the identification of interfacial molecules, which is able to treat arbitrarily shaped interfaces. The algorithm exploits the similarities between the concept of probe sphere used in ITIM and the circumsphere criterion used in the α-shapes approach, and can be regarded either as a reference-frame independent version of the former, or as an extended version of the latter that includes the atomic excluded volume. The new algorithm is applied to compute the intrinsic orientational order parameters of water around a dodecylphosphocholine and a cholic acid micelle in aqueous environment, and to the identification of solvent-reachable sites in four model structures for soot. The additional algorithm introduced for the calculation of intrinsic density profiles in arbitrary geometries proved to be extremely useful also for planar interfaces, as it allows to solve the paradox of smeared intrinsic profiles far from the interface. © 2013 American Institute of Physics

    Multi-Player Diffusion Games on Graph Classes

    Full text link
    We study competitive diffusion games on graphs introduced by Alon et al. [1] to model the spread of influence in social networks. Extending results of Roshanbin [8] for two players, we investigate the existence of pure Nash equilibria for at least three players on different classes of graphs including paths, cycles, grid graphs and hypercubes; as a main contribution, we answer an open question proving that there is no Nash equilibrium for three players on (m x n) grids with min(m, n) >= 5. Further, extending results of Etesami and Basar [3] for two players, we prove the existence of pure Nash equilibria for four players on every d-dimensional hypercube.Comment: Extended version of the TAMC 2015 conference version now discussing hypercube results (added details for the proof of Proposition 1
    corecore